Comparison of Plantar Pressures Distribution Patterns between Foot Orthoses Provided by CAD-CAM and Foam Impression Methods

Emilie Ki Sum Wai
MSc in Health Care (Health Technology)

Supervisor
Dr. Aaron Leung
Introduction

• Normal Values
• Factors influence in plantar pressure pattern
• Foot Orthotics in Plantar Pressure Measurement
Introduction - Normal Values

- evaluate foot deformities: flatfoot, clubfoot, hallux valgus, plantar fasciitis, callus formation and foot ulcers (diabetes mellitus)
- normative data is needed to provide a basic knowledge on plantar pressure.
- comparison with for the abnormal conditions of plantar pressure
Introduction – Normal Values

- 30 healthy subjects
- EMED-SF measuring system with a two-step recording technique
- smallest standard deviations of pressure values
 - heel and the second and third metatarsal
 - → heel, central forefoot regions were functionally the most stable areas of the foot during the stance
- greatest variations of pressure values
 - the mid-foot, the fifth metatarsal and the lesser toes

(Bryant et al. 2000)
Introduction- Normal Values

- 74 healthy volunteers
- walk with a cadence of 100 steps/min
- using Musgrave Footprint
- foot image was divided into 6 plantar regions
- greatest pressure
 - second to fourth Metatarsal Heads (greater structure stability, act as main loading area)
 - hallux
- lowest pressure
 - fifth metatarsal Head

(Bennett and Duplock 1993)
Introduction

Factors influence plantar pressure pattern:
1. Walking speed
2. Gender
3. Type of foot and type of shoes
Introduction – walking speed

- Effects of different walking speed on plantar pressure
- Subjects: 20 normal subjects
- walking on treadmill at 6 different speeds
- Specific regions: hallux, the medial, central and lateral forefoot and the heel
- Conclusion:
 - hallux and heel regions - highest pressures (increased linearly with faster speeds)
 - central and medial forefoot pressure (initially increased then become steady plateaued at faster speeds)
 - lateral forefoot had the lowest peak pressure (decreased at faster speeds)

(Segal et al. 2004)
Introduction - Gender, foot types and types of shoes

- **no gender differences** plantar pressure or contact area - Men and women → subject group

 (Murphy DF et al. 2005)

 (Soames RW, 1985)

- high arch, normal and low arch groups - **high arch group** result in least loading in mid-foot region and compensated by increasing loadings in the heel and forefoot regions.

 (Rosenbaum et al. 1994)

- peak pressure, central metatarsals pressure and heel pressure - **bare feet significant higher pressure then wearing shoes**

 (Burnfield JM et al. 2004)

 (Praet FE et al. 2003)
Introduction - Effect of Orthotics in Plantar Pressure measurement

- Four casting methods
 - foam box techniques in full weight-bearing and Semi weight-bearing
 - suspension plaster casting techniques in full weight-bearing and Semi weight-bearing
- Concluded: the effects of different casting methods on peak pressure and gait lines for accommodative and functional orthoses are almost the same

(Guldemond et al. 2006)
Introduction - Effect of Orthotics in Plantar Pressure Measurement

• Three Dimensional finite element analysis
• Custom-moulded soft insole reduced the peak pressure on the metatarsal and heel regions and increased the contact area
• Concluded: custom-moulded shape is more important in reducing the peak pressure rather than the material stiffness of insole

(Cheung et al. 2005)
Introduction

• Aim:
 1. compare the plantar pressure distribution pattern between foot orthoses generated by CAD-CAM and foam impression methods
 2. provide additional reference on indication of appropriate orthotic intervention for different foot conditions
Methodology

• Subjects: 5 males and 25 females
 • Age 31.6 (22-55)
 • Height: 1.6m (1.5m-1.76m)
 • Weight: 56.4kg (44.0kg-71.8kg)

• Inclusion criteria:
 • No static foot deformity
 • No painful foot condition
 • Arch index within normal (arch index= 0.21 <AI<0.26)

(Cavanagh PR et al. 1987)
Methodology

Instruments:

• Novel PEDAR-mobile (Novel Gmbh, Munich, Germany) in-shoe plantar pressure measuring system
 • Four different size insole sensors 2.6mm, 99 sensors using capacitance transducer
 • Frequency: 50 Hz
 • Calibration was done before data capture
Methodology

• The Swiss Comfort CAD-CAM foot orthotics system

- Assessment stand
- Vacuum system
- Comfortspline software
- Analyzer
- Former
Methodology

Materials
- Foam box
- Insole materials
 - Multiform
 - Multikork

Insoles materials:

<table>
<thead>
<tr>
<th>Insoles materials:</th>
<th>Flat insole</th>
<th>Foam impression</th>
<th>CAD-CAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3mm multiform+ 2mm multikork</td>
<td>3mm multiform + 2mm, 8mm multikork</td>
<td>3mm multiform + 20mm multikork</td>
<td></td>
</tr>
</tbody>
</table>

Thickness
- ~5mm Even thinkness
- ~5mm At the points of the heel centre and the toes
- ~5mm At the points of the heel centre and the toes
Methodology

• Procedures
 • Foot shape collection
 • Shape rectification
 • Insole fabrication
 • Measurement of plantar pressure
 • Data analysis
Methodology

• Foot shape collection
 • Weight and height of subjects were measured and recorded
 • Footprints were taken by using Harris-Mat footprint and arch index were calculated (Cavanagh PR et al. 1987)
 • Foot shape were taken by
 • Foam impression method
 • CAD-CAM method
 • Partial weight-bearing
 • Sit on firm chair with hip and knee flex in 90°
 • Subtalar joint in neutral position
Methodology

Shape rectification

• Foam impression method
 • Impressed foam impression box kit was filled with Plaster of Paris → positive model
 • Modification of toe piece → flatten toe platform
 • Smoothed by sand paper and allowed to dried up

• CAD-CAM method
 • Toes section was modified to become a flat platform
 • The foot shape adjusted shallower through the ComfortSpline software on in order to prepare rooms for the covering
Methodology

• Insole Fabrication
 • Foam impression method - vacuum moulding
 • CAD-CAM method - former
 • Flat Insole
Methodology

- Foam Impression method
- CAD-CAM method
- Flat insole
Methodology

• Plantar pressure measurement
 • Foot orthoses fitted with 1cm heel height and laced sport shoes
 • Pedar insole sensor with correct size was select
 • zero setting
 • Walked along 10m pathway with his/her walking speed
 • Each trial- more then 10 steps
 • 3 successful trial taken in each condition
 • Conditions were taken in randomly
Methodology

• Data Analysis
 • Pedar multi-mask evaluation was used
 • Divided into 8 regions

1. Heel region
2. Medial mid-foot region
3. Lateral mid-foot region
4. Medial forefoot region
5. Mid-forefoot region
6. Lateral forefoot region
7. Hallux
8. Other toes
Methodology

- Parameters
 - Peak Pressure
 - Maximum force
 - Pressure time integral
 - Contact area
- SPSS statistical software (version 11.0)
 - One-way ANOVA tests
 - post hoc Tukey
Result

- **Peak Pressure**

![Peak Pressure in Eight Foot Regions](image)

- Flat Insole
- CAD-CAM provided orthosis
- Foam Impression provided orthosis
Result

• Peak Pressure - flat insole
Result

• Peak Pressure- CAD-CAM provided orthosis
Result

- Peak Pressure- Foam impression provided orthosis
Result

- Peak Pressure

Flat insole | CAD-CAM | Form impression
Result

- **Maximum force**

![Bar chart showing maximum force in eight foot regions.](chart.png)
Result

• Maximum force
Result

- **Pressure-time integral**

![Pressure-time Integral in Eight Foot Regions](image)

- **Flat Insole**
- **CAD-CAM provided orthosis**
- **Foam Impression provided orthosis**
Result

• Contact Area

Contact Area in Eight Foot Regions

<table>
<thead>
<tr>
<th></th>
<th>Flat insole</th>
<th>CAD-CAM provided orthosis</th>
<th>Foam Impression provided orthosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medial arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medial forefoot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid forefoot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral forefoot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big toe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• Comparing among flat insole and total contact insole (CAD-CAM and foam impression)
 • Medial arch support in total contact insole contributed in
 • ↓ Peak pressure and maximum force in heel
 • ↑ peak pressure and maximum force in medial arch region
 • ↑ pressure-time integral in medial arch region
 • ↑ total contact area and area in medial arch region
Discussion

• Comparing among insoles provided by CAD-CAM and foam impression method
 • ↓ peak pressure and pressure-time integral in mid forefoot region in CAD-CAM provided orthosis
 • compression force was applied on the dorsum of mid foot in foam impression method
 • → transverse arch collapsed
 • Not in CAD-CAM → neutral metatarsal support during scanning
Discussion

- Comparing among insoles provided by CAD-CAM and foam impression method
 - ↑ contact area in medial arch region in CAD-CAM
- Foam impression method
 - Difficult to control subject’s foot
 - Applied force
 - Keep foot in subtalar neutral
Discussion

• Casting method and technique
 • Casting method and technique affected the outcome of the insoles
 • semi-weight bearing condition are different
 • percentages of weight-bearing in foam impression method were higher than CAD-CAM method
 • contact area of CAD-CAM insole was significant higher than the foam impressed insole
Discussion

• Suggested Guideline by selection of CAD-CAM and Foam Impression Methods
 • both methods can decrease heel pressure and increase medial arch support
 =>plantar fasciitis
Discussion

• Suggested Guideline by selection of CAD-CAM (Swiss Comfort) and Foam Impression Methods
 • CAD-CAM provided orthosis: reduced peak pressure and pressure-time integral in mid forefoot → callus or pain in 2nd and 3rd MTH
 • CAD-CAM provided orthosis: hallux valgus which associated with flatfeet / forefoot varus and flatfeet which associated forefoot / hindfoot structural disorder => foot alignment is easily control
Conclusion

• Total contact insole provided by both methods can redistribute peak pressure and maximum force from heel to medial mid foot area
• Swiss Comfort CAD-CAM System could provide similar result as the foam impression method did
References

References

• Murphy, D.F., Beynnon, B.D., Michelson, J.D., Vacek, P.M. Efficacy of plantar loading parameters during gait in terms of reliability, variability effect of gender and relationship between contact area and plantar pressure. Foot Ankle International, 2005, 26(2), 171-179.
Acknowledgements

• Dr. Aaron Leung, my supervisor
• Mr. Daniel Lo, my Hospital Department Manager
• Mr. Denis Wong, my service in-charge
• Mr. Noel Kwong, my colleagues
• All my subjects
Thank you