Prognostic factors in breast cancer: Which patients should receive adjuvant systemic therapy?

Marc van de Vijver
Academic Medical Center
Amsterdam, Netherlands

Hong Kong, 17th January 2008

Clinical problems in breast cancer treatment

• Which patients should receive adjuvant systemic treatment
• What is optimal locoregional treatment for individual patients (example: breast conserving therapy vs mastectomy)
• Can the sensitivity of tumors to specific drugs be predicted?
• Which carcinomas in situ are “dangerous”; which are not

Genetic alterations in breast cancer

• Are starting to show us how breast cancer develops

however

• Not many clinically useful prognostic and predictive factors have been identified yet.

Tumor cell behavior is determined by the activity of many genes

• The activity of one or a few genes cannot predict tumor cell behavior in a reliable way.

• Gene expression profiling (if anything) is expected to provide new prognostic and predictive profiles

Decisions on adjuvant systemic treatment for breast cancer patients

• Who should be treated
• What treatment should be given

From: Polychemotherapy for early breast cancer: an overview of the randomised trials
Early Breast Cancer Trialists' Collaborative Group; Lancet, 1998
2008: Clinicopathological factors used to guide adjuvant systemic treatment:

- Age
- Lymph node status
- Tumor size (>1 cm: most patients in the USA receive adjuvant systemic treatment)
- ER status (USA: most ER+ patients receive adjuvant hormonal therapy)

Gene expression profiling: Frozen tumor material is needed

- Surgical excision
- Fine Needle Aspirate
- Core Needle Biopsy

Spots of microarray

One spot = Many copies of one gene

Determining gene activity with microarrays

Analysis of gene expression in breast cancer

Scanned image of a flexjet 25,000 gene human microarray

Hybridized with mixture of 'red'-labeled cRNA of a tumor sample and 'green'-labeled reference cRNA
Analysis of gene expression data

- Unsupervised classification
 - 2D Hierarchical cluster analysis
- Supervised classification
 - “gene by gene”
- Applying gene expression signatures
 - i.e. “proliferation signature”, etc

Cohort of 295 consecutively treated breast cancer patients

- Stage I and II breast cancer
- 151 lymph node negative; 144 lymph node positive patients
- Age <53 years

Perou et al., Nature 2000
Supervised Classification for Prognosis

- 78 breast tumors
 - patients < 55 years
 - tumor size < 5 cm
 - lymphnode negative (LN0)

Prognosis Reporter Genes

- distant metastasis < 5 years (n=34)
- no distant metastasis > 5 years (n=44)

Validation series; n=295 (stage I and II)

Metastasis-free probability and overall survival for the whole cohort

Wound Response Signature

- In vitro Wound Model – 516 genes
- Prognostic Significance in
 - Breast
 - Lung
 - Gastric cancer

* Iyer et al. Science 1999 83-7
Chang et al. PLoS Biology 2004 Feb 2 2 1-9
Chang/Nuyten et al. PNAS 2005 March 8 102 10 3738 - 3743

Three Breast Cancer Studies Used To Select 21 Gene Panel
16 Cancer and 5 Reference Genes

- Best RT-PCR performance and most robust predictions
Current Status of Micro-Array Prognosis Prediction in Breast Cancer

- 70-genes (Mammaprint®)
- 76-genes (Rotterdam)
- 21-genes (Oncotype DX®)
- Intrinsic Genes (Perou, Sorlie)
- Wound Signature (Chang, Nuyten)

High Concordance in Signatures

RASTER study

MicroarRAy prognoSTication in breast cancER

- Technology introduction program for 70 gene prognosis profile
- T1/2 N0 patients <60 years
- 16 participating hospitals

Standardizing methods to obtain tumor for gene expression profiling

RNA later
RASTER study

Patient inclusion: 2004-2006

- Patients included: 812 (100%) [mean age 48 yrs (range 27-60)]
- 70-gene expression profiles: 427 (53%)
 - Poor profile: 208 (49%)
 - Good profile: 219 (51%)
- Exclusion: 385 (47%)

Clinical profile (CBO) vs. 70-gene profile

Discordant risk profiles: 30%

<table>
<thead>
<tr>
<th></th>
<th>70-gene signature</th>
<th>Clinical CBO high risk</th>
<th>Clinical CBO low risk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk</td>
<td>167 (39%)</td>
<td>76 (18%)</td>
<td>243 (57%)</td>
<td></td>
</tr>
<tr>
<td>High risk</td>
<td>219 (51%)</td>
<td>132 (31%)</td>
<td>184 (43%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>386 (100%)</td>
<td>208 (49%)</td>
<td>427 (100%)</td>
<td></td>
</tr>
</tbody>
</table>

EORTC-BIG MINDACT TRIAL DESIGN
6,000 Node negative women

 Evaluate Clinical-Pathological risk and 70-gene signature risk

- 55% 32% 13%

Gene expression profiling in “basal type” tumors

- Breast tumors selected based on IHC:
 - ER-, PR-, HER2-
- 99 patients
- Gene expression profiling
- IHC
 - p53, KRT5/6, c-KIT, EGFR
- For 70 patients with >5 year FU: survival analysis

Kaplan Meier curve (n=70)

- Almost all ER-negative tumors have a 70 gene poor prognosis profile
- Patients with ER-negative tumors have ~60-70 survival
- Additional prognostic factors are needed in ER-negative breast cancer
Clustering filtered gene set expression compared to group mean

Conclusions

- Gene expression profiling and other genetic techniques are helping to discover novel predictive tests
- These tests will help in guiding adjuvant systemic treatment

Acknowledgements

The Netherlands Cancer Institute
Departments of Pathology, Molecular Carcinogenesis, Radiotherapy, Biometrics
Bas Kreike, Dimitry Nuyten, Hugo Herlings, Juliane Hannemann, Hans Halfwerk, Petra Kristel, Laura van ‘t Veer, Guus Hart, Hans Peterse, Arno Velds, Tijn van der Velde, Douwe Ateba, Ron Kerkhoven, Emiel Rutgers, Harry Bartelink, Sjoerd Rodenhuis

Rosetta Inpharmatics, Inc.
Seattle, WA, USA
Hongyue Dai, Yudong He, Mao Mao, Matthew Marton, Tracy Erkkila, Mark Parrish, George Schreiber, Chris Roberts, Peter Linsley, Stephen Friend

Stanford University
Howard Chang, Julie Sneddon, Matt van de Rijn, Pat Brown