Diabetic Emergencies: Ketoacidosis and the Hyperglycemic Hyperosmolar State

Adam Bursua, Pharm.D., BCPS
Objectives

• Describe the epidemiology of diabetic ketoacidosis (DKA) and the hyperglycemic hyperosmolar state (HHS)

• Differentiate between DKA and HHS

• List factors that may precipitate DKA and HHS

• Identify the metabolic derangements observed in DKA and HHS

• Describe the treatment of DKA and HHS as it relates to their pathophysiology
Agenda

• Introduction
 – Epidemiology and Statistics
 – Basic concept review

• Pathophysiology and clinical features of DKA and HHS

• Management of DKA and HHS

• Transitioning care for DKA and HHS patients
Introduction: Epidemiology and Statistics

• DKA is more common in younger patients with Type 1 DM

• HHS is more common in older adults with Type 2 DM

• In experienced centers, mortality is rare in DKA (~5%)

• Mortality rates from HHS are less clear, but higher (10% +)
Introduction: Healthcare Burden

• ~115,000 U.S. hospital discharges for DKA in 2003
 – 62,000 in 1980

• Average cost = $13000/hospitalization

• Treatment of DKA accounts for 1 out of every 4 dollars spent on Type 1 DM
Basic Concept Review

• Difference between Type 1 and Type 2 DM

• Effects of hyperglycemia
 – Glycosuria
 – Osmotic draw of water into vasculature

• Insulin deficiency

• The role of glucagon
Insulin Deficiency or Resistance

- Decreased Glucose Uptake
- Insulin deficiency or resistance
- Increased delivery of glucose precursors to liver
- Unsuppressed Glucagon Release*

* It takes less insulin to suppress glucagon than it does to transport glucose into cells
The Role of Glucagon

- Increased glucose production
- Glucagon
- Disinhibits ketogenesis
Agenda

• Introduction
 – Epidemiology and Statistics
 – Basic concept review

• Pathophysiology and clinical features of DKA and HHS

• Management of DKA and HHS

• Transitioning care for DKA and HHS patients
The Pathogenesis of DKA and HHS

1. Insulin deficiency or resistance
2. Decrease glucose uptake and utilization
3. Enhanced glucagon release
4. Glycosuria
5. +/- Ketoacid formation
6. Hyperglycemia
7. Dehydration and electrolyte derangements
8. Increased Plasma osmolality
9. DKA and HHS
Reduction in the net effective action of insulin coupled with a concomitant elevation of counterregulatory hormones

DKA
- Usually due to insulin deficiency seen in Type 1 DM
- Predominant feature is development of acidosis secondary to production of ketoacids
 - More profound acidosis
 - Less profound hyperglycemia

HHS
- Occurs with lesser degrees of insulin deficiency as seen in Type 2 DM
- Predominant features are profound hyperglycemia and hyperosmolality
 - Ketoacid production less pronounced
 - Acidosis less severe
 - More profound fluid and electrolyte abnormalities
Absolute Insulin Deficiency

↑ Lipolysis

↑ FFA to liver

↑ Ketogenesis

↓ Alkali reserve

↑ Ketoadidosis

Triacylglycerol

Hyperlipidemia

Counterregulatory Hormones

↓ Protein synthesis

↑ Proteolysis

↑ Gluconeogenic substrates

↓ Glucose utilization

↑ Gluconeogenesis

↑ Glycogenolysis

Hyperglycemia

Glycosuria (osmotic diuresis)

Loss of water and electrolytes

Dehydration

Decreased fluid intake

Hyperosmolarity

HHS

DKA
Precipitating Factors of DKA and HHS

• Infection

• Non-compliance to diabetic treatment

• Underlying medical illness

• Medications

• Cocaine and Alcohol

• Undiagnosed diabetes
Clinical Presentation of DKA

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea and Vomiting (50-80%)</td>
<td>Tachycardia</td>
</tr>
<tr>
<td>Thirst and Polyuria</td>
<td>Hypotension</td>
</tr>
<tr>
<td>Weakness and Anorexia</td>
<td>Dehydration</td>
</tr>
<tr>
<td>Abdominal Pain (30%)</td>
<td>Warm, Dry Skin</td>
</tr>
<tr>
<td>Visual Disturbances</td>
<td>SOB/Hyperventilation (Kussmaul’s)</td>
</tr>
<tr>
<td>Somnolence</td>
<td>Impaired consciousness or coma</td>
</tr>
<tr>
<td>Coffee-ground emesis (25% of vomiting patients)</td>
<td>Weight loss</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td></td>
</tr>
<tr>
<td>Presence of ketones in urine</td>
<td></td>
</tr>
<tr>
<td>Fruity breath (like nailpolish remover)</td>
<td></td>
</tr>
<tr>
<td>Normal body temperature despite infection</td>
<td></td>
</tr>
</tbody>
</table>
Clinical Presentation of HHS

• Similar to DKA with the following possible exceptions:
 – Symptoms develop over longer period of time
 – Polyuria, polydipsia, weight loss
 – Altered mental status and coma more common due to higher osmolality
 – More significant volume depletion
 – Serum sodium is frequently abnormally high
 – Metabolic acidosis is seldom present
Laboratory Findings

<table>
<thead>
<tr>
<th>DKA</th>
<th>HHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 250, Generally < 800</td>
<td>Blood Glucose</td>
</tr>
<tr>
<td><7.00 - 7.3</td>
<td>pH</td>
</tr>
<tr>
<td><10 – 18</td>
<td>Serum Bicarbonate</td>
</tr>
<tr>
<td>Positive</td>
<td>Urine Ketones</td>
</tr>
<tr>
<td>Positive</td>
<td>Serum Ketones</td>
</tr>
<tr>
<td>> 10 (mild), usually >12</td>
<td>Anion Gap</td>
</tr>
<tr>
<td>~ 6 liters</td>
<td>Total Water Deficit</td>
</tr>
<tr>
<td>Variable</td>
<td>Serum Osmolality</td>
</tr>
<tr>
<td>Variable</td>
<td>Mental Status</td>
</tr>
<tr>
<td>(stupor in severe DKA)</td>
<td></td>
</tr>
</tbody>
</table>
Electrolyte Disturbances in DKA and HHS

• Serum sodium is usually low because of the osmotic flux of water from intracellular to extracellular spaces in the presence of hyperglycemia
 – Increased sodium in the presence of hyperglycemia usually indicates profound water losses

• Elevations in serum potassium are caused by insulin deficiency, hypertonicity, and acidemia
 – Low potassium on admission reflects severe depletion and requires vigorous replacement and cardiac monitoring
Effects of DKA/HHS on Sodium & Potassium

- Extracellular
- Intracellular

- NA
- Water
- Glucose

- K
- Water
- Glucose
Agenda

• Introduction
 – Epidemiology and Statistics
 – Basic concept review

• Pathophysiology and clinical features of DKA and HHS

• Management of DKA and HHS

• Transitioning care for DKA and HHS patients
True or False

• In DKA, the blood glucose is usually higher than in HHS
 – False

• Patients with HHS more commonly present with altered mental status than patients with DKA
 – True

• Patients with type 2 DM are more likely to present with DKA than with HHS
 – False

• The 2 most common precipitating factors in the development of DKA or HHS are inadequate insulin therapy and infection
 – True
Agenda

• Introduction
 – Epidemiology and Statistics
 – Basic concept review

• Pathophysiology and clinical features of DKA and HHS

• Management of DKA and HHS

• Transitioning care for DKA and HHS patients
Management of DKA and HHS

- Correct dehydration
- Correct Hyperglycemia and Acidosis
- Correct Electrolyte Disturbances
- Identify and treat precipitating event

Frequent Patient Monitoring
Management of DKA

Complete initial evaluation. Start IV fluids: 1 L of 0.9% NaCl per hour. (Initially 15-20 ml/kg/hr)

- **IV Fluids**
 - Determine hydration status
 - Hypovolemic Shock
 - Mild Hypotension
 - Cardiogenic Shock

- **Insulin**
 - IV Route
 - Insulin: Regular 0.15 unit/kg as IV bolus
 - Subcut/IM Route
 - Insulin: Regular 0.4 unit/kg ½ IV bolus, ½ IM or Subcut

- **Potassium**
 - Serum K⁺ ≤ 3.3 mEq/L
 - Hold insulin and give 40 mEq K⁺ over 4 hrs (2/3 KCl and 1/3 KPO₄) until K⁺ is 3.3 mEq/L
 - pH < 6.9
 - Dilute 150 mEq of NaHCO₃ in 1 L D₃W and infuse at 200 ml/hr.
 - pH 6.9-7.0
 - Dilute 100 mEq of NaHCO₃ in 1 L of D₃W and infuse at 200 ml/hr.
 - pH > 7.0
 - No HCO₃

- **Assess need for Bicarbonate**

- **Evaluate corrected serum Na⁺**
 - Serum Na⁺ Normal
 - Serum Na⁺ Low
 - 0.45% NaCl (4-14 ml/kg/hr) depending on hydration state

- **When serum glucose reaches 250 mg/dL**
 - Change to 5% dextrose with 0.45% NaCl at 150-250 ml/hr with adequate insulin (0.05-0.1 unit/kg/hr IV infusion or 5-10 unit Subcut every 2 hrs) to keep the serum glucose between 150-200 mg/dl until metabolic control is achieved.

- **Check Clini Chem every 2-4 hrs until stable. Look for precipitating causes. After resolution of DKA, follow blood glucose (BG) every 4 hrs and give sliding scale regular insulin Subcut in 5 unit increments for every 50 mg/dl increase in BG above 150 mg/dl for up to 20 units for BG of ≥ 300 mg/dl.**
Goals of Management

Management of DKA and HHS

- Correct dehydration
 - Expansion of intravascular and extravascular volume and restore renal perfusion

- Correct Hyperglycemia and Acidosis
 - Glucose < 200
 - Bicarbonate ≥ 18
 - Venous pH > 7.3

- Correct Electrolyte Disturbances
 - Avoid Hypokalemia (keep K+ between 4-5)
 - Prevent cardiac complications and respiratory weakness
Agenda

• Introduction
 – Epidemiology and Statistics
 – Basic concept review
• Pathophysiology and clinical features of DKA and HHS

• Management of DKA and HHS

• Transitioning to non-emergent care
Transition to Non-emergent Care

- Ensure treatment precipitating event
- Transition to subcutaneous insulin
- Patient education
 - Understanding Diabetes
 - Sick day management
- Improving access to medical care
Transition to Subcutaneous Insulin

• Calculate total insulin requirement over 24 hours
• Multiply by 0.8 to determine total daily dose (TDD) of SC insulin
• Give 50% of TDD as basal insulin dose
 – long acting analogue (glargine/detemir/NPH)
• Split remaining 50% into 3 doses of prandial insulin to be given before meals
• Calculate correction factor based on TDD
 – use rule of 1800 (for rapid acting analogues-lispro, aspart, etc.)
 – Use rule of 1500 for regular insulin
Patient Education

- Consider patient’s state of mind
 - Be compassionate
 - Help answer questions about hospital course
 - Use event as opportunity to motivate/educate

- Specific counseling should include
 - Blood glucose monitoring
 - Injecting insulin doses
 - Sick day management
 - When to contact HCP
 - BG goals and use of supplemental insulin during illness
 - Means to suppress fever and treat infection
 - Initiation of easily digestable liquid diet containing carbs and salt
 - Signs, symptoms, and management of hypoglycemia
 - Medical Alert Bracelet
Agenda

• Introduction
 – Epidemiology and Statistics
 – Basic concept review
• Pathophysiology and clinical features of DKA and HHS
• Management of DKA and HHS
• Transitioning to non-emergent care